阅读历史 |

重回高考前我在科学圈火爆了 第163章(3 / 5)

加入书签

sp;简单的聊了下,聊以叙旧,陆骁、吴桐就转而进入正题。他们的时间,基本都是用在了思维碰撞之上,同等境界的两人,沟通起来,思念闪电般的运作,你讲得我立即能懂,我说得,给你带来了灵感火花,这样的碰撞,是一种至臻的进步享受。

&esp;&esp;“等离子体的研究,我现在有了初步的设计思路,我来给说下!”陆骁拿出他随身带的笔电,打开研发资料,开始给吴桐讲解起来他目前的突破。

&esp;&esp;等离子体中的粒子具有动能,没有一个强大约束力的束缚,它们会到处运动而散开,

&esp;&esp;在聚变

&esp;&esp;反应中,有限的磁场,无法给雨全力的还能轰击真空室壁,使等离子体粒子数目及其能量都要损失。

&esp;&esp;太阳及其他恒星中的热核聚变反应是借助引力场来约束等离子体的。这些星体的质量很大,引力也很大,足以将等离子体约束在一起,进行热核反应。

&esp;&esp;但地球上的高温等离子体靠弱的引力来约束并使其进行热核反应是不可能的,必须用别的约束方法。

&esp;&esp;热核聚变研究中约束等离子体的主要方法是磁约束和惯性约束。还有一种堪称热聚变的反义词,的低温等离子体制膜或刻蚀技术中,有时也用磁约束方法来减少等离子体粒子和能量的损失。

&esp;&esp;不过,低温聚变的技术,目前也是个难关壁垒,其中的难度,比热核聚变从零到有,只高不低,是真正目前还存在与遐想的技术,吴桐在心中做了个记号,等她把热核聚变做出来,冷核聚变将会是她延伸的课题。

&esp;&esp;对于吴桐来说,项目都是从需求和兴趣出发,兴之所至,全力专研,突破的成就感龙神,是什么都无法比拟的!吴桐喜欢,在这样的领域,一个接一个的山峰,被她翻阅,是让人有种高兴的欣喜蔚然!

&esp;&esp;“目前国际主流,磁约束是利用磁场与等离子体相互作用将等离子体限定在一定区域的方法。主要是以磁场对等离子体粒子施加的洛伦兹力,可使粒子绕磁力线作回旋运动而被磁场约束住;磁场的磁应力能对等离子体的整体施加宏观力来约束等离子体!

&esp;&esp;如果等离子体内存在电流,则等离子体电流与其自身产生的磁场的相互作用力--箍缩力能使等离子体箍缩,也就是约束起来;磁镜效应可使速度满足一定条件的等离子体带电粒子在强磁场区反射回来,将粒子约束住。

&esp;&esp;磁约束只能约束垂直于磁场方向上的等离子体,不能约束沿着磁力线方向运动的等离子体“陆骁简单介绍之后,进而进入了他的设想重点。

&esp;&esp;“说起来,等离子体也是个大湍流问题,我想以宏观定量,确定一个坐标核心,来进行等离子体的计算,这部分数学模型,吴总,是你的拿手好戏,我需要你的帮助!”

&esp;&esp;第423章

&esp;&esp;规律

&esp;&esp;陆骁仔细说着他的想法,湍流现象并非一般流体的专利,等离子体同样会产生湍流现象。而且因为有外磁场的存在,等离子体的湍流,会比一般流体的湍流现象更加复杂,更加难以预测。

&esp;&esp;“当然没问题,陆哥,需要我做哪些配合?”吴桐没有任何迟疑,一口应下陆骁的邀约,湍流这个板块,于数学的角度上,吴桐玩得相当拿手,毕竟,在ns-方程的上,吴桐的积累,是当之无愧的问鼎世界巅峰。

&esp;&esp;聚变反应中,等离子体的温度在达到峰值之后将突破上亿度,几乎相当于恒星的内部。目前已知的发现中,没有任何一种材料能阻挡这灼热的能量。但是,万事万物都有相对性,人类的伟大,就在于善用工具,无论是器物意义上的工具,还是知识上的工具。

&esp;&esp;等离子体约束,就是人类对这种聚变反应进行人为干涉控制的基础,也是整个可控核聚变可控的意义所在。

&esp;&esp;在仿星器装置的概念,就是利用扭曲的磁场,用强磁场来约束聚变反应,将它们束缚在有限的空间内,让它们远离轨道内壁,从而减少高温对轨道壁的灼烧侵袭。

&esp;&esp;但是,饶是如此,目前已知的材料中,依然没有多少,能够在这已经算是辐射的温度中坚持太久,还有一个最令世界头疼困扰的原因,就是中子辐射。

&esp;&esp;不过,这一点儿,已经在吴桐这里即将成为过去式,他们已经有了突破目前局限跨越性的耐高温材料,以及抗中子辐射,抗嬗变的hc-1新型耐热材料,以及应对辐射的设计方案。

&esp;&esp;托卡马克装置在放电时间上却是陷入了瓶颈。

&esp;&esp;目前最长放电记录的保持着是华

↑返回顶部↑

书页/目录